El Tarot del amor se basa en la baraja del famoso espiritista Rider-Waite-Smith, fue presentado en 1910 y lleva como nombre principal el de la persona que lo publicó.
Fue creado por el místico Arthur Edward Waite y la artista Pamela Colman Smith, que colaboró con Waite ilustrando cada una de las cartas según las indicaciones que recibía de Waite, un estudioso de los temas relacionados con el esoterismo y el ocultismo y gran conocedor del tarot.
Puedes acceder a distintas tiradas de este tarot de forma online y gratis en este enlace: http://www.tarotdelamor.gratis
La gran aportación y el cambio más importante de esta baraja respecto a las anteriores fue que el Tarot Rider Waite introdujo, en cada uno de los arcanos menores, imágenes llenas de simbología, que transmitían los mensajes y significados originales de cada arcano individualmente.
Algo nuevo porque hasta entonces los arcanos menores se habían representado simplemente con su número y el dibujo del elemento correspondiente. Este cambio en la riqueza de las imágenes supuso también una importante novedad para los estudiosos del tarot en el aprendizaje de los significados de cada arcano.
Bien es verdad que las cartas más importantes van a ser los arcanos mayores, no es menos cierto que los arcanos menores pueden ser muy útiles ya nos pueden ayudar a complementar la información que nos ha facilitado los arcanos mayores.
El Tarot Rider amplió también la gama de los colores usados en las láminas, ofreciendo así escenas con más energía, más elementos y de una calidad artística mucho mayor que los sencillos dibujos de los arcanos menores del Tarot de Marsella.
Otra novedad del Tarot Rider Waite es que intercambió los números de los arcanos VIII y XI, de modo que la Justicia, que en el Tarot de Marsella es el arcano VIII, pasaba a ser el XI y la Fuerza, que en el Tarot de Marsella se representa con el número XI, en el Rider se convertía en el arcano VIII. Este cambio lo hizo Waite para respetar el orden de los signos zodiacales.
El impacto y la influencia de este tarot se aprecia en casi todos las barajas realizadas con posterioridad a él, las cuales frecuentemente se inspiran en las imágenes dibujadas por la ilustradora Colman Smith.
Las lecturas realizadas con el Tarot Rider permiten identificar en cada detalle y símbolo del arcano características, comportamientos, sentimientos y acciones del consultante o de las personas de su entorno, detalles de experiencias ya vividas o que están por venir ya que facilitan un método de adivinación preciso y minucioso de cómo se debe o no actuar en cada preciso momento.
A. E. Wait, miembro de la orden de la Golden Dawn, y autor también del libro “Claves del Tarot”, una auténtica biblia para todas las personas que usan el tarot como sistema adivinatorio, llamó a esta baraja “tarot rectificado” y con ella intentó presentar a los interesados en el ocultismo una visión renovada del tarot basada en la simbología secreta.
La baraja original está formada por 78 cartas: 22 Arcanos Mayores y 56 Arcanos Menores.
Kurt Gödel , un matemático, lógico y filósofo que nació en 1906 en el Imperio austro húngaro, y que falleció en 1978 en Princeton, Estados Unidos, es considerado uno de los más importantes lógicos de todos los tiempos, debido al impacto de su trabajo en el pensamiento científico y filosófico del siglo XX. Intentando emplear la lógica y la teoría de conjuntos para comprender los fundamentos de la matemática, Gödel se haría célebre gracias a sus dos teoremas de la incompletitud, (publicados en 1931 a los 25 años de edad, un año después de finalizar su doctorado en la Universidad de Viena, en los cuales demostró que en cualquier sistema lógico basado en axiomas y reglas de inferencia, existen enunciados cuya verdad o falsedad no vamos a poder decidir, basándonos en la propia lógica matemática del sistema).
Gödel realizó también importantes contribuciones a la teoría de la demostración al esclarecer las conexiones entre la lógica clásica, la lógica intuicionista y la lógica modal, además de demostrar la existencia de soluciones paradójicas a las ecuaciones de campo de la relatividad general del famoso científico Albert Einstein, cuyos “universos rotatorios” permitirían viajar en el tiempo (sus soluciones se conocen como la métrica de Gödel o el universo de Gödel).
En 1946, después de huir del régimen Nazi y avecindarse en Estados Unidos, Gödel se convirtió en un miembro permanente del IEA (Instituto de Estudios Avanzados) de la Universidad de Princeton, lugar donde entabló una amistad legendaria con el mismo Albert Einstein, graficada en las famosas caminatas que daban juntos en las dependencias del IEA. El propio Einstein, hacia el final de su vida, le confiaría a sus cercanos que “su propio trabajo ya no importaba mucho, pues llegaba al instituto únicamente para tener el privilegio de caminar a casa junto a Kurt Gödel”.
Einstein, de hecho, junto al economista Oskar Morgenstern, asesoraron a Gödel cuando éste dio su examen para obtener la ciudadanía estadounidense, preocupados de que el comportamiento impredecible de su amigo pusiera en riesgo su oportunidad. Se cuenta que cuando el juez que presidía el trámite mencionó brevemente el régimen nazi del cual había escapado, Gödel le informó que había descubierto una manera en que una dictadura pudiese instaurarse legalmente en los EE.UU., mediante una contradicción lógica que existía en la Constitución de ese país. Ni el juez ni Einstein o Morgenstern, por cierto, le permitieron a Gödel terminar la elaboración de su pensamiento y la ciudadanía norteamericana finalmente le fue entregada.
La demostración ontológica de Gödel
Durante sus años en el IEA, los intereses de Kurt Gödel se tornaron hacia la filosofía y la física. Estudió las obras de Gottfried Leibniz, Immanuel Kant y Edmund Husserl, y a principios de los años 70’ distribuyó entre sus colegas una prueba en la cual mediante argumentaciones lógico-matemáticas probó la existencia de Dios o un ser superior, basada en la argumentación ontológica previa de San Anselmo de Canterbury y en los trabajos del mismo Leibnitz , la cual se conoce ahora como la demostración ontológica de Gödel.
La demostración, que por cierto no es de fácil comprensión para los no iniciados, es la siguiente:
-Axioma 1. (Dicotomía) Una propiedad es positiva si, y sólo si, su negación es negativa.
-Axioma 2. (Cierre) Una propiedad es positiva si contiene necesariamente una propiedad positiva.
-Teorema 1. Una propiedad positiva es lógicamente consistente (por ejemplo, existe algún caso particular).
-Definición. Algo es semejante a Dios si, y solamente si, posee todas las propiedades positivas.
-Axioma 3. Ser semejante a Dios es una propiedad positiva.
-Axioma 4. Ser una propiedad positiva (lógica, por consiguiente) es necesaria.
-Definición. Una propiedad P es la esencia de x si, y sólo si, x contiene a P y P es necesariamente mínima.
-Teorema 2. Si x es semejante a Dios, entonces ser semejante a Dios es la esencia de x.
-Definición. NE(x): x existe necesariamente si tiene una propiedad esencial.
-Axioma 5. Ser NE es ser semejante a Dios.
-Teorema 3. Existe necesariamente alguna x tal que x es semejante a Dios.
Resultado: Dios existe.
La prueba ontológica de Gödel en notación matemática.
La prueba de Gödel utilizó la lógica modal (que distingue entre verdades necesarias, la que es verdadera en todos los mundos posibles, y las verdades contingentes, que es cierta en nuestro mundo, pero puede ser falsa en otro) y empleó en la definición de Dios una cuantificación explícita sobre sus propiedades, es decir, dado que la existencia necesaria es positiva, se concluye: ser como Dios es positivo. Además, la semejanza con Dios es una esencia de Dios, porque implica todas las propiedades positivas, y cualquier propiedad no positiva es la negación de alguna propiedad positiva, por lo tanto Dios no puede tener ninguna propiedad no positiva. Como cualquier objeto semejante a Dios es necesariamente existente, entonces cualquier objeto semejante a Dios en un mundo, lo es en cualquier otro mundo, por la definición de existencia necesaria. Dado la existencia de un objeto semejante a Dios en un mundo, probado anteriormente, podemos concluir que existe un objeto semejante a Dios en cualquier otro mundo posible.
Por supuesto, la comprensión de estos axiomas u razonamientos no son de fácil comprensión para el ciudadano común, aunque lo que quería Gödel, después de morir en 1978, era dejar tras de sí una teoría basada en los principios de la lógica modal que sugería que un ser superior debe existir. Este razonamiento matemático no tenía como intención convencer de la existencia de Dios, sino demostrar que el llamado “argumento ontológico” de la existencia de Dios era válido.
Los detalles de las matemáticas involucradas en la prueba ontológica de Gödel son ciertamente complicados pero, en esencia, lo que el sabio austríaco sostenía era lo siguiente: “Dios, por definición, es lo más perfecto que puede ser pensado. Si pensáramos en Dios como inexistente, entonces no sería realmente la idea de Dios, pues tendría la imperfección de no existir. Entonces, la oración ‘Dios existe’ es necesariamente verdadera. Por lo tanto, Dios existe”.
O bien: “Por definición, Dios es aquello de lo cual nada mayor puede concebirse. Por tanto, es imposible concebir que Dios no existe, pues de lo contrario podríamos concebir algo mayor que él, a saber, un Dios que sí exista. Así pues, es inconcebible que Dios no exista; luego existe.”
Si bien el argumento de Gödel no era totalmente novedoso, sí lo era el modelo matemático que propuso para probar esta idea. Sus teoremas y axiomas, entonces, pueden expresarse como ecuaciones matemáticas que se pueden rechazar o probar. Por lo pronto, recientemente, dos científicos europeos, el alemán Christoph Benzmüller, de la Universidad Libre de Berlín, y el austriaco Bruno Woltzenlogel, de la Universidad Técnica de Viena, lograron probar informáticamente el “Teorema de Dios” desarrollado a finales del siglo pasado por el matemático austriaco Kurt Gödel, que concluía que en base a los principios de la lógica debía existir un ser superior.
Si bien los científicos demostraron, usando una mayor lógica modal y un ordenador MacBook, que la argumentación de Gödel era matemáticamente correcta, aclararon que la verdadera noticia tenía que ver con la demostración de que una tecnología superior puede ayudar a la ciencia, más que con la teoría de que Dios exista o no. “Lo que se ha logrado a través de los computadores supone un éxito del genial razonamiento de Gödel. La prueba ontológica era, más que cualquier otra cosa, un buen ejemplo de algo inaccesible en las matemáticas o de la inteligencia artificial, que se ha resuelto usando la tecnología actual. El hecho de que la formalización de estos teoremas complicados se pueda realizar con computadores no profesionales abre todo tipo de posibilidades. Por eso, es totalmente increíble que el Teorema de Gödel se pueda probar de forma automática en pocos segundos o incluso menos apretando unas teclas y usando un ordenador portátil estándar».
Los críticos del “Teorema de Dios” de Gödel, por lo pronto, esgrimen que es imposible enjuiciar una demostración tan abstracta, pues incluso muchos lógico-matemáticos no han sido capaces de explicar todos los aspectos de esta prueba, y por lo tanto es muy difícil asegurar su completa naturaleza. Otros, en tanto, afirman que los cinco axiomas de la prueba de Gödel son cuestionables. De ese modo, si los axiomas de la prueba pueden ser cuestionados, entonces las conclusiones también pueden ser cuestionadas.
La Librería Británica tiene una espada muy vieja en cuya hoja aparece una misteriosa inscripción que ninguno de sus expertos ha podido descifrar, y por eso necesita de tu ayuda para lograrlo.
La espada pertenece al Museo Británico, fue encontrada en la región de Lincolnshire allá por el siglo XIX y, desde entonces, el misterioso mensaje que lleva en su mortal hoja de acero no ha sido revelado.
Se dice que el mensaje podría tener algún significado religioso o que se trata de la marca de un habilidoso herrero, pero hasta la fecha nadie ha logrado saber qué significan las letras ‘+NDXOXCHWDRGHDXORVI+‘ que vienen escritas en su noble hoja.
¿Estás a la altura de este misterio? Saca al investigador que llevas dentro y ayúdale a los del British Library para recibir reconocimiento y gloria. No siempre una prestigiosa organización cultural de renombre internacional solicita tu ayuda para resolver un misterio!