La velocidad de la luz podría ser menor a la estimada.

El físico James Franson de la Universidad de Maryland ha capturado la atención de la comunidad de la física mediante la publicación de un artículo en ‘New Journal of Physics’ en el que afirma haber encontrado una evidencia que sugiere que la velocidad de la luz, tal y como está descrita por la teoría de la relatividad general, es en realidad más lenta de lo que se había pensado.

300 Mil Km por segundo

La teoría de la relatividad general sugiere que la luz viaja a una velocidad constante de 299.792.458 metros por segundo en el vacío. Es la c en la famosa ecuación de Einstein y, prácticamente todo lo que se mide en el cosmos, se basa en ella.

Los argumentos de Franson para la conclusión de su estudio se basan en observaciones realizadas a la supernova SN 1987A, que estalló en febrero de 1987. Las medidas tomadas en la Tierra recogieron la llegada de los dos fotones y neutrinos procedentes de la explosión, pero, a su juicio, hubo un problema: la llegada de los fotones fue más tarde de lo esperado por 4,7 horas, un dato que los científicos de la época atribuyeron a una probabilidad de que los fotones vinieran de otra fuente. Continuar leyendo «La velocidad de la luz podría ser menor a la estimada.»

10.000 veces más veloz que la luz

El entrelazamiento cuántico entre partículas es una cosa fantástica, aunque realmente no sepamos ni cómo funciona ni para qué sirve. Por alguna razón cuando dos fotones interactúan, ambos se conectan íntimamente de tal modo, que incluso aunque les separen vastas distancias, su interconexión continuará.

Los físicos cuánticos hace mucho tiempo que conocen esta forma de entrelazamiento. Varios experimentos, repetidos muchas veces, han probado que cuando se envían dos fotones entrelazados a lugares distintos (digamos uno llamado ‘A’ a Boston y otro llamado ‘B’ a California, por aquello de la película) su polarización siempre será opuesta. Es decir, si el primero muestra polarización ‘arriba’ el otro mostrará indefectiblemente la polarización ‘abajo’.

Es más, (y aquí viene lo fascinante) si de algún modo cambiamos la polarización del fotón ‘A’ de su valor inicial ‘arriba’ al nuevo estado ‘abajo’, entonces, de forma instantánea, el fotón ‘B’ alterará su estado para mostrar el contrario al primero, pasando a polarizarse ‘arriba’. No es de extrañar que Einstein definiese a esta propiedad cuántica como «una acción fantasmal a distancia».

Lo que ha hecho ahora un equipo de físicos chinos, dirigidos por Juan Yin de la Universidad Científica Tecnológica de China en Shanghai, es un experimento que involucra a fotones entrelazados, separados entre sí 16 kilómetros, con los que se intentó medir la velocidad a la que se da esa interacción que antes llamábamos instantánea.

El resultado ha sido sorprendente. La interacción cuántica es 10.000 veces más rápida que la velocidad de la luz. (Su trabajo puede consultarse en Arxiv).

Aunque no es acertado pensar en usar esta propiedad de las partículas para comunicarnos a velocidades superiores a las de la luz, lo cual sería muy positivo en el futuro para hablar con nuestras bases espaciales repartidas por el sistema solar. El problema con estas partículas es que uno no conoce la polarización del par hasta que no la mide, de modo que no hay forma de hacer que los fotones del otro lado tomen el estado que se desea, para de este modo crear una especie de código morse.

Esto recuerda a otra de las peculiaridades de la mecánica cuántica, aquella que afirma que las partículas se encuentran en una superposición de estados que no puede conocerse hasta que alguien se detiene a observarlas. Es la base del famoso experimento mental propuesto por Schrondinger, en el que un gato encerrado en una caja está vivo-muerto, hasta que la abrimos para comprobar en cuál de los dos estados se encuentra.

Habrá que esperar antes de poder desarrollar el famoso ansible dibujado por Orson Scott Card en su célebre novela «El juego de Ender».