Curiosidades Matemáticas: Jugando con los números…

Algunas divertidas situaciones matemáticas que hemos titulado: Jugando con los números.

1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321

Otras expresiones matemáticas entretenidas:

1 x 9 + 2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1111
1234 x 9 + 5 = 11111
12345 x 9 + 6 = 111111
123456 x 9 + 7 = 1111111
1234567 x 9 + 8 = 11111111
12345678 x 9 + 9 = 111111111
123456789 x 9 +10= 1111111111

Y una de las que más me gusta…

1 x 1 = 1
11 x 11 = 121
111 x 111 = 12321
1111 x 1111 = 1234321
11111 x 11111 = 123454321
111111 x 111111 = 12345654321
1111111 x 1111111 = 1234567654321
11111111 x 11111111 = 123456787654321
111111111 x 111111111=12345678987654321

Sin duda alguna; La Mejor!!!

9 x 9 + 7 = 88
98 x 9 + 6 = 888
987 x 9 + 5 = 8888
9876 x 9 + 4 = 88888
98765 x 9 + 3 = 888888
987654 x 9 + 2 = 8888888
9876543 x 9 + 1 = 88888888
98765432 x 9 + 0 = 888888888

Curiosidades matemáticas: Jugando con el número dos.

Recordé un viejo juego que consiste en formar todos los números del 0 al 10 utilizando solamente cinco veces el número 2 (dos), y los signos + , -, x y /; Respetando el órden de las operaciones:

Así, se pueden formar:

0 = 2 – 2/2 – 2/2
1 = 2 + 2 – 2 – 2/2
2 = 2 + 2 + 2 – 2 – 2
3 = 2 + 2 – 2 + 2/2
4 = 2/2 + 2 + 2/2
5 = 2 + 2 + 2 – 2/2
6 = 2 + 2 + 2 + 2 – 2
7 = 2 × 2 + 2 + 2/2
8 = 2 × 2 × 2 + 2 – 2
9 = 2 × 2 × 2 + 2/2
10 = 2 + 2 + 2 + 2 + 2

Lo más entretenido de éste juego es que cada resultado no es único. Por ejemplo, para construir el número 4 (cuatro), empleamos: 4 = 2/2 + 2 + 2/2 pero tambien podríamos haber escrito: 4 = 2 × 2 × 2 – 2 – 2

Curiosidades Matemáticas: La suma de los 100 primeros números.

Cuenta la historia que en el año 1787, cuando Carl Friedrich Gauss tenía apenas 10 años, un alboroto en el aula del colegio provocó que el maestro enojado, pidiera a los alumnos que sumaran todos los números del 1 al 100. Creyendo que el castigo sería tenerlos a todos un buen rato ocupados.

A los pocos minutos, Gauss se levantó del pupitre, y le entregó el resultado de la suma al profesor : 5050. El profesor, asombrado y seguramente creyendo que su alumno había puesto un número arbitrariamente, se dispuso él mismo a hacer la interminable suma. Al cabo de un buen rato, comprobó que, efectivamente, la suma daba como resultado 5050.

¿Como hizo Gauss para resolver la suma en tan pocos minutos?. Si no se tratara de un problema matemático, seguramente creeríamos que el joven niño contaba con algún tipo de poder paranormal. En efecto, el poder más brillante a veces se encuentra en la razón.

Sucede que Gauss hizo lo siguiente:

Como debía sumar los números del 1 al 100; Es decir:

1+2+3+4+5+6+……………..+97+98+99+100.

Observó por un momento la secuancia de números y descubrió que si sumaba el primero con el último, el segundo con el anteúltimo y así sucesivamente obtenía siempre el mismo resultado:

(1+100) = (2+99) = (3+98) = …. = (50+51) = 101

Luego, y como entre el número 1 y el 100 tenía 50 pares de números, solo restaba multiplicar por 50 el resultado obtenido.

50 x 101 = 5050.

Mas tarde, Gauss aplicaría el mismo principio para hallar la suma de la serie geométrica y muchas otras series.