La teoría del campo unificado

A mediados del siglo XIX, se conocían cuatro fenómenos visibles a través del vacío. A saber:

  1. gravitación
  2. luz
  3. atracción y repulsión eléctrica y
  4. la atracción y repulsión magnéticas.

Estos fenómenos podían ser estudiados y observados de manera independiente, ya que no poseían ninguna conexión entre sí. Sin embargo, entre 1864 y 1873 el físico teórico escocés J. Clerk Maxwell analizó matemáticamente los fenómenos eléctricos y magnéticos. En ciertas relaciones básicas las «ecuaciones de Maxwell» describían tanto los fenómenos eléctricos como los magnéticos y demostraban una dependencia entre ellos.

De hecho, no existía ningún efecto eléctrico que no fuese acompañado de un determinado efecto magnético, y recíprocamente no existían sucesos magnéticos sin mediar de alguna manera los eléctricos. Se comenzó a hablar entonces de un «campo electromagnético», que se extendía a través del vacío y que, por contacto, influía sobre los cuerpos de acuerdo con la intensidad del campo en ese punto del espacio.

Maxwell demostró también que haciendo oscilar de manera regular a este campo se originaba una radiación que se alejaba de la fuente de oscilación a la velocidad de la luz en todas direcciones. La luz propiamente dicha era una de esas «radiaciones electromagnéticas» y Maxwell predijo la existencia de formas de luz con longitudes de onda mucho más pequeñas y mucho más grandes que la de la luz ordinaria. Esas otras formas de luz fueron descubiertas a lo largo de los veinte años siguientes, y hoy día se habla de todo un «espectro electromagnético».

De éste modo, de los cuatro fenómenos obserbables mencionados al principio de éste artículo, tres de ellos se podían fundir en un único campo – (electricidad, magnetismo y luz) – Sin embargo, las explicaciones teóricas existentes aún dejaban afuera el efecto de la gravedad.

Los descubrimientos de Maxwell redujeron los axiomas a solo dos campos independientes, El campo electromagnético y el campo gravitatorio.

Es un sentimiento maravilloso el descubrir las características unificadoras de un complejo de fenómenos diversos que parecen totalmente desconectados en la expreciencia directa de los sentidos.

Albert Einstein, 1901

Los físicos, sin embargo, soñaban con la unificación de éstos fenómenos ya que sería mucho mejor que hubiese un solo campo y fue así como surgió la idea de una «teoría del campo unificado». Uno de los impulsores de ésta nueva gran teoría sería nada menos que Albert Einstein, quien por ese momento era asesor científico de la Marina.

Partiendo de su teoría de la relatividad general, para describir la gravedad, y de la teoría de Maxwell para el electromagnetismo, Einstein buscó una teoría unificada más amplia, que integrase ambas fuerzas. Cuando Einstein hacía esto, aún se sabía muy poco de las fuerzas débil y fuerte, fuerzas consideradas hoy tan fundamentales como la gravedad y el electromagnetismo.

A partir de allí, una serie de descubrimientos lograrían relacionar algunas de las fuerzas electromagnéticas y gravitatorias, aunque las ecuaciones obtenidas no permitieron la generalización para todas las fuerzas fundamentales.

Después de 1935 se descubrieron dos nuevos tipos de campo que sólo afectan a las partículas subatómicas y, además, sólo a distancias inferiores a un diámetro de un núcleo atómico. Son la «interacción nuclear fuerte» y la «interacción nuclear débil».

Se cree que uno de los experimentos relacionados con interacción de éstas fuerzas, en la búsqueda por la Teoría de un campo unificado, fueron las pruebas realizadas al buque D. E. 173, en el llamado Experimento Filadelfia.

Las Fuerzas Fundamentales en la actualidad

En la actualidad, los científicos intentan demostrar que todas estas fuerzas fundamentales, aparentemente diferentes, son manifestaciones, en circunstancias distintas, de un modo único de interacción. El término «teoría del campo unificado» engloba a las nuevas teorías en las que dos o más fuerzas fundamentales aparecen como si fueran básicamente idénticas.

La teoría de la gran unificación intenta unir en un único marco teórico las interacciones nuclear fuerte y nuclear débil, y la fuerza electromagnética. Esta teoría de campo unificado se halla todavía en proceso de ser comprobada. La teoría del todo es otra teoría de campo unificado que pretende proporcionar una descripción unificada de todas las fuerzas fundamentales.

La contribución del LHC

El trabajo de Higgs se entrelazaba con uno de los conceptos más importantes de la física: la simetría. El problema en la década de los 60 era que las teorías básicas de las partículas eran demasiado simétricas. Los físicos tenían que encontrar algo que pudiera romper esta simetría y permitir que las partículas adquirieran peso.

La supersimetría se refiere a la «gran danza» de partículas en el universo. Conocemos una docena de partículas subatómicas, con nombres exóticos como quark, leptón y neutrino. Cada partícula tiene una pareja supersimétrica; el problema es que sólo podemos ver a una de cada par: las «otras significantes» se mantienen invisibles. Si el LHC confirma la supersimetría, contribuirá a que los científicos avancen hacia el objetivo final de formular una teoría unificada de las fuerzas fundamentales de la naturaleza, en particular la gravedad, que actualmente queda fuera del ámbito de las fuerzas conocidas al nivel cuántico de las partículas subatómicas

Novedades en la Tabla Periódica de los Elementos

Las tablas de los elementos, van teniendo agregados, a medida que la experimentación física –química avanza.

Es así que ha visto agrandarse la familia de los transuranianos, por diferentes síntesis (artificialmente) desde hace unas seis décadas: 93. Neptunio, Np, nombrado para recordar al planeta Neptuno, 94. Plutonio, Pu, nombrado para recordar el planeta enano Plutón, 95. Americio, Am, nombrado en honor de América del Norte, 96. Curio, Cm, nombrado en honor de Pierre y Marie Curie, 97. Berkelio, Bk, denominación asignada en honor de la Universidad de Berkeley, 98. Californio, Cf, nombrado en honor del estado de California, donde se ubica la Universidad, 99. Einsteinio, Es, nombrado en honor del físico Albert Einstein, 100. Fermio, Fm, nombrado en honor de Enrico Fermi, 101. Mendelevio, Md, denominado en honor a químico ruso Dmitry Mendeleyev que fue el que dio forma a la tabla periódica, 102. Nobelio, por el creador del premio Nóbel, 103. Lawrencio, Lr, nombrada así en honor de Ernest O. Lawrence, 104. Rutherfordio, Rf, nombrado en honor de Ernest Rutherford, 105. Dubnio, Db, 106. Seaborgio, Sg, nombrado en honor a Glenn T. Seaborg, 107. Bohrium, Bh, en honor del físico Niel Bohr, 108. Hassio, Hs, en honor de la ciudad de Hesse, 109. Meitnerio, Mt, nombrado así en honor de Lise Meitner, 110 (Uun) Darmstadtio, Ds nombrado en honor a la ciudad de Darmstadt, Alemania, 111. (Uuu) Roentgenio, Rg nombrado así en honor a la físico alemán Wilhelm Conrad Röntgen, 112 (Uub) Copernicum y los 113 (Uut) 114 (Uuq), 115 (Uup) 116 (Uuh), 118 (Uuo), que esperan su designación.

Además, como ya es común para muchos, que los elementos se presentan en la naturaleza como isótopos, con ciertas variaciones en sus constituyentes, por lo que, por ejemplo el peso atómico del carbón, como existen tres isótopos, cada uno con pesos atómicos distintos (C-12, C-13 y C-14) y estos se encuentran en concentraciones variables en distintos lugares. Como resultado, la tabla periódica actualmente contiene pesos atómicos promediales de esos distintos pesos isotópicos.

Ahora, la Unión Internacional de Químicas Pura y Aplicadas ha decidido mostrar –por ahora-el peso atómico de diez elementos como un rango en vez de un peso promedial único. Mientras que la nueva tabla será más precisa, muchos académicos admiten que será más complicada de enseñar a los estudiantes y que los profesores deberán elegir un solo valor del intervalo mientras hacen cálculos de química.

por Manlio E. Wydler

Mendeléiev, Dmitri Ivánovich (1834-1907): Químico ruso conocido sobre todo por haber elaborado la tabla periódica de los elementos químicos. Esta tabla expone una periodicidad (una cadencia regular) de las propiedades de los elementos cuando están dispuestos según la masa atómica.

Mendeléiev nació en Tobolsk (Siberia), estudió química en la Universidad de San Petersburgo y en 1859 fue enviado a estudiar a la Universidad de Heidelberg. Allí conoció al químico italiano Stanislao Cannizzaro, cuyos planteamientos sobre la masa atómica determinaron su opinión. Mendeléiev regresó a San Petersburgo y fue profesor de química en el Instituto Técnico en 1863 y profesor de química general en la Universidad de San Petersburgo en 1866. Escribió los dos volúmenes de Principios de química (1868-1870), uno de los primeros libros de texto sobre química, que se convirtió en un clásico.

Electrostática : La Jaula de Faraday

Una Jaula de Faraday es un recinto cerrado formado por paredes metálicas o por un enrejado de mallas apretadas que impide en el interior la influencia de los campos eléctricos exteriores. Este suceso, descubierto por Michael Faraday en el año 1830, se pone de manifiesto en numerosas situaciones cotidianas, por ejemplo, en el mal funcionamiento de los teléfonos celulares en el interior de ascensores o edificios con estructura de acero.

Se emplean para proteger de descargas eléctricas, ya que en su interior el campo eléctrico es nulo. Uno de los casos prácticos más comunes para explicar éste fenómeno es el de porque lo rayos no le hacen daño a los pasajeros de un avión o un automóvil cuando éstos medios de transporte son alcanzados por el mismo.

¿Qué sucede si tu automóvil es alcanzado por un rayo?

Cualquier recinto cerrado de paredes metálicas funcionará como «aislante» de cualquier actividad electromagnética. En el ejemplo del vehículo, éste principio funciona porque el mismo representa en sí una Jaula de Faraday. En el interior de una jaula de Faraday, el campo electromagnético es nulo y por lo tanto no pueden producirse descargas eléctricas. La energí­a del rayo se descarga a través del exterior de la Jaula. Lo mismo ocurre con un avión o un automóvil. Adentro del vehículo la actividad electromagnética queda anulada por completo.

Como en el interior de ésta jaula no existe campo eléctrico alguno, tampoco puede haber una diferencia de potencial entre dos puntos cualesquiera del recinto, la cual es condición necesaria para que una carga eléctrica se desplace.

El siguiente video muestra un experimento realizado en una clase de ciencias de la Universidad de Bonn, en la cual una Caja de Faraday y su ocupante son sometidos a una tensión de hasta 100.000 V. Demostrando así la cualidad protectora de la jaula.

Explicación científica de la Jaula de Faraday

El funcionamiento de la jaula de Farday se basa en las propiedades de un conductor en equilibrio electrostático. Cuando la caja metálica se coloca en presencia de un campo eléctrico externo, las cargas positivas se quedan en las posiciones de la red; los electrones, sin embargo, que en un metal son libres, empiezan a moverse puesto que sobre ellos actúa una fuerza dada por:

Donde e es la carga del electrón. Como la carga del electrón es negativa, los electrones se mueven en sentido contrario al campo eléctrico y, aunque la carga total del conductor es cero, uno de los lados de la caja (en el que se acumulan los electrones) se queda con un exceso de carga negativa, mientras que el otro lado queda con un defecto de electrones (carga positiva). Este desplazamiento de las cargas hace que en el interior de la caja se cree un campo eléctrico (representado en rojo en la siguiente animación) de sentido contrario al campo externo, representado en azul.

El campo eléctrico resultante en el interior del conductor es por tanto nulo

Muchos dispositivos que empleamos en nuestra vida cotidiana están provistos de una jaula de Faraday: los microondas, escáneres, cables, etc. Otros dispositivos, sin estar provistos de una jaula de Faraday actúan como tal: los ascensores, los coches, los aviones, etc. Por esta razón se recomienda permanecer en el interior del coche durante una tormenta eléctrica: su carrocería metálica actúa como una jaula de Faraday.